Amalgamated Worksheet \# 1

Various Artists

April 9, 2013

1 Peyam Tabrizian

Problem 1:

Find $T \in \mathcal{L}\left(\mathbb{R}^{3}\right)$ whose characteristic polynomial and minimal polynomial are not the same

Problem 2:

Find all 2×2 matrices A such that $A^{2}-3 A+2 I=0$
Hint: You may use the following result: If \mathbb{R}^{2} has a basis of eigenvectors of A, then there exists a matrix P such that $A=P D P^{-1}$, where D is the matrix of eigenvalues of A

Problem 3:

If $\operatorname{dim}(V)=n<\infty$, and $T \in \mathcal{L}(V)$ show that:

$$
\operatorname{dim}\left(\operatorname{Span}\left\{I, T, T^{2}, \cdots\right\}\right)<n
$$

Problem 4:

Find a formula for T^{-1} in terms of the coefficients of the characteristic polynomial of T

Problem 5:

(if time permits) Given $v \in V$, a polynomial g is called the T-annihilator of v (or T-killer of v) if $g(t)$ is a monic polynomial of least degree such that $g(T) v=0$.

Show that such a g divides the minimal polynomial q of T

Problem 6:

(if time permits) Find an (infinite-dimensional) vector space V and a linear operator $D \in \mathcal{L}(V)$ with no minimal polynomial.

2 Daniel Sparks

Cayley-Hamilton via Matrix Multiplication and Jordan Form
Let T be a nilpotent operator, upper triangular with respect to the basis $\beta=$ v_{1}, \cdots, v_{n}. Let $V_{i}=\operatorname{Span}\left\{v_{1}, \cdots, v_{i}\right\}$ for $i=1, \cdots, n$, and let $V_{0}=(0)$.
(a) Prove that $T^{i}\left(V_{i}\right)=(0)$. What does this say about the matrix of T^{i} with respect to β ?
(b) Prove that $T^{i}\left(V_{j}\right) \subset V_{j-i}$, so long as $j-i \geq 0$. What does this say about the matrix of T^{i} with respect to β ?
(c) Let M be a strictly upper-triangular, $n \times n$ matrix. By the "first diagonal" I shall mean the main diagonal, entries $M_{1,1}$ through $M_{n, n}$. By the "second diagonal" I shall mean the entries above these ones, i.e. $M_{1,2}, \cdots, M_{n-1, n}$. (So the n-th diagonal is just the upper right entry, $M_{1, n}$.)
Prove that, in the matrix M^{i}, the entries on or below the i-th diagonal are zero.
(d) Let $A=\left(\begin{array}{cccc}A_{1} & 0 & \cdots & 0 \\ 0 & A_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & A_{k}\end{array}\right)$ and $B=\left(\begin{array}{cccc}B_{1} & 0 & \cdots & 0 \\ 0 & B_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & B_{k}\end{array}\right)$ be block diago-
nal matrices of the same dimension. (That is, A_{i} and B_{i} are square matrices of the same size.) Prove that

$$
A B=\left(\begin{array}{cccc}
A_{1} B_{1} & 0 & \cdots & 0 \\
0 & A_{2} B_{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & A_{k} B_{k}
\end{array}\right)
$$

[Hint: Induction, the base case being $k=2$. For the inductive step $k=n \Rightarrow k=n+1$, you will use not only the result for $k=n$, but also for $k=2$ again. (Parenthetical remark: this is an example of "strong" mathematical induction.)]
(e) Let L be a linear operator on W, a complex vector space of dimension n. Let $\lambda_{1}, \cdots, \lambda_{m}$ be the distinct eigenvalues of L. Let β be a basis for which L is in JordanCanonical form, and let $W=U_{1} \oplus \cdots \oplus U_{m}$ be the corresponding decomposition into generalized eigenspaces. Writing $e_{i}=\operatorname{dim} U_{i}$, recall that the characteristic polynomial of L is defined to be

$$
\left(T-\lambda_{1}\right)^{e_{1}} \cdots\left(T-\lambda_{m}\right)^{e_{m}}
$$

Using the ideas discussed above, prove the Cayley-Hamilton theorem. That is, show that $\left(L-\lambda_{1}\right)^{e_{1}} \cdots\left(L-\lambda_{m}\right)^{e_{m}}=0$.
[Hint: For simplicity, use the version of Jordan form which has one block per generalized eigenspace. Use parts (c) and (d) above.]

